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ReviewToxicogenomics in Predictive
Toxicology in Drug Development

population potentially at risk. In order to compensate
for this relatively small sample size in these animal stud-
ies, the future risk to humans at therapeutic dosages is
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pound synthesis and, not least, the large numbers of
animals. Any approach that offers savings in (any of)
these areas would represent a significant advance inSummary
the development of new drugs.

The goal of toxicology is the assessment of possible
risk to man. An emerging technology with the potential

Problems of Attrition Facing the Pharmaceuticalto have a major impact on risk assessment is toxico-
Industry Todaygenomics. In this review, we provide an overview of
Developing new drugs is becoming more expensive andthe many possibilities for toxicogenomics including
more difficult. There has been a noticeable shift in thetechnology platforms, data interpretation, and regula-
fortunes of the pharmaceutical industry since the 1990story perspective and we give examples of toxicogeno-
due to two main factors. First, there is the increasingmics investigations. Toxicogenomics is a powerful tool
cost of developing new drugs. Several estimates putfor compound classification, for mechanistic studies,
the cost of bringing a new drug to market at aroundand for the detection of toxicity markers. Thus, toxico-
$800 million—up from around $230 million in 1987. In-genomics helps in the extrapolation of findings across
vestment in drug development in the US has tripled tospecies and increases predictability. Biomarkers are
over $30 billion over the last 10 years but with fewervaluable in the evaluation of compounds at earlier de-
drugs coming onto the market. The number of New Drugvelopment phases, improving clinical candidate selec-
Applications (NDA) made to the FDA peaked at 131 intion. Caution regarding the interpretation of the results
1996 but had fallen to 78 by 2000. Second, there isis still necessary. Nevertheless, toxicogenomics will
the continuing problem of adverse drug reactions (ADR)accelerate preclinical safety assessments and im-
seen in the postmarketing period, resulting in withdrawalprove the prediction of toxic liabilities, as well as of
or restricted use of the drug. Thus, 16 of 548 marketedpotential risk accumulation for drug-drug or drug-dis-
drugs were withdrawn in the period 1975–1999, whileease interactions.
another 45 of these 548 drugs had warning labels added,
restricting the therapeutic indications and so limiting

Traditional Approaches for Assessing Toxicity the potential market. Any advance in technology that
Toxicology, the study of adverse effects of chemicals can shorten development times and/or more accurately
on living organisms, has traditionally been evaluated by reflect the liabilities of a drug once it enters the general
the dosing of animals to define well-established cyto- population would be of tremendous benefit.
logic, physiologic, metabolic, and morphologic end- It should be noted that the productivity seen today is
points. The evaluation of the risk to humans can not be a reflection of the strategies that the pharmaceutical
performed in human individuals initially and thus must companies put in place 10–15 year ago. As such, the
be derived from studies performed in other species. industry has begun to reinvent the process of drug dis-
Typically, rodents are used to identify toxic substances covery by factoring in new technological advances in
such as carcinogens, reproductive toxins, and neurotox- parallel with general process improvements and new
ins. Follow-up studies in nonrodent species can then management models. As a consequence, we are begin-
be used to further define the effects of low doses as ning to see trends in improvement, given the quantity
well as species extrapolation and mechanism of action. of new clinical candidates, first-time studies in humans,

Although it is well recognized that intact animals are and the indication of improved success rates.
needed to reflect physiologic changes and mirror the Success of development depends in part on the rigor-
effects of chronic dosing, such studies have disadvan- ous attrition of unsuitable compounds in the early
tages. Animals may not be fully predictive of the re- stages. In this early phase, successes in screening and
sponse in humans due to species variation in physiol- selection are relatively quick and cheap to obtain. Be-
ogy, anatomy, and metabolism. Also, toxicology studies yond this phase, experimental designs (including clinical
require large numbers of animals to allow statistically trials) become increasingly lengthy and expensive. Tra-
significant conclusions to be drawn. Nevertheless, these ditionally, these expensive later phases have been con-
numbers are still very small compared to the human sidered to be the most reliable for the selection of the

best compounds. Genomics offers the possibility of
moving the selection process upstream, bringing a new*Correspondence: laura.suter-dick@roche.com
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Table 1. Survey of Reasons for Failure of Compounds in Development

Industry Median Preclinical Phase I Phase II Phase III Registration

Clinical Safety 0.5% 27.9% 13.4% 9.8% 30.0%
Efficacy 5.6% 17.5% 52.0% 72.5% 20.0%
Formulation 5.1% 5.8% 1.6% 0.0% 0.0%
Market potential 6.2% 3.9% 7.9% 3.9% 30.0%
PK/bioavailability 11.8% 14.9% 2.4% 0.0% 0.0%
Strategic 14.4% 12.3% 13.4% 5.9% 20.0%
Resources 1.5% 1.3% 0.8% 3.9% 0.0%
Toxicology 44.1% 10.4% 2.4% 3.9% 0.0%
Cost of goods 1.5% 1.3% 0.0% 0.0% 0.0%
Unknown 7.2% 1.3% 4.7% 0.0% 0.0%
Other 2.1% 3.2% 1.6% 0.0% 0.0%
Number of projects 195 154 127 51 10

and rigorous filtering process into the very early low-cost sponses and also the identification of populations of
responders and nonresponders [1]. The most optimisticphase. Table 1 illustrates the importance of toxicology in
estimates predict that the replacement of traditionalthe preclinical phase of drug development. During this
methods of toxicology by toxicogenomics could eventu-stage of development, toxicity is the major cause of
ally shorten the safety assessment of a new chemicalfailure, causing over 40% of failures. Later, efficacy in
entity from years to days and reduce costs by an esti-clinical trials becomes the leading cause of attrition—
mated factor of 4 to 6 times [2]. A more realistic pictureapproximately 75% by Phase 3. Thus, recognizing toxic-
with the data currently available suggests that toxico-ity earlier is critically important if the early pipeline is to
genomics will reduce failure rates by helping select thebe filled with more of the most promising candidates so
right compounds for development early on and by accel-that these can be developed most efficiently with no
erating toxicology testing and identifying suitable bio-extra cost in resource.
markers amenable to screening using the generated
data [3]. Currently, there seems to be general agreementConcept of Toxicogenomics
that this technology will greatly accelerate the detectionToxicogenomics applies genomics concepts and tech-
of toxic liabilities by replacing long-term exposure ex-nologies to study adverse effects of chemicals. These
periments for the selection of clinical candidates. How-studies use global gene expression analyses to detect
ever, the technology is unlikely ever to be able to predictexpression changes that influence, predict, or help de-
idiosyncratic ADR.fine drug toxicity. Technological advances have enabled
Aim of Predictive Toxicology: Lead Selectionscientists to simultaneously analyze thousands of genes
and Liability Identificationof several species, including humans and rodents,
ADR is a major problem from a public health perspective

quickly and in a reproducible manner. By evaluating and
as well as for the development of new medicines. In a

characterizing differential gene expression after expo-
meta-analysis of literature, Lazarou et al. showed that

sure to drugs, it is possible to use complex expression ADR is between the fourth and sixth cause of death in
patterns to predict toxicologic outcomes and to identify the United States, accounting for more than 100,000
mechanisms involved with or related to the toxic event. deaths in 1994 [4]. Failure of compounds in late preclini-
In short, the technology now exists to potentially revolu- cal development or, even worse, in the clinic, represents
tionize toxicity testing. a very important economic burden for the pharmaceuti-

Toxicogenomics thus combines conventional toxicol- cal industry. The current pharmaceutical paradigm con-
ogy with the emerging technologies of genomics and centrating efforts on enhancing efficacy is inherently
bioinformatics. Gene and protein expression respond inefficient, since increased potency does not imply re-
specifically to external stimuli such as pathological con- duced toxicity. Indeed, more potent compounds might
ditions or exposure to drugs. The corresponding geno- lead to more severe nonspecific effects, increasing the
mic and proteomic technologies thus provide a new way likelihood of failure due to toxicity. Thus, to increase
of understanding biological systems and their response productivity and minimize failure, efficacy and safety
to toxic insult. This leads to a better understanding of the would ideally be determined simultaneously at very early
mechanisms of toxicity, by the identification of toxicity- stages [5]. In order to achieve this, a change in the
related gene expression signatures (fingerprints) and the traditional drug discovery process must take place, en-
prediction of the toxic potential of unknown compounds abling scientists to integrate toxicology in the earlier
by comparing their gene-expression profiles to the fin- discovery phases. Thus, toxicity would ideally be de-
gerprints of known, similar compounds. In addition, the tected earlier at the time of lead selection or shortly
identification of “toxicity-related” genes, together with thereafter.
the rapidly growing understanding of the human ge- Overview of the Approaches:
nome, is providing a basis for identifying and character- Technologies and Platforms
izing sequence variations in genes that might affect re- The concept of using gene and protein expression analy-
sponses to chemicals. This is already having a great sis for mechanistic and predictive toxicology is not com-
impact in pharmacology and toxicology, since it allows pletely new. However, it is the amount of information

that can be gathered using genomics tools that hasthe prediction/differentiation of species-specific re-
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transformed molecular toxicology. It was less than 50 differential display, amplified fragment length polymor-
phism (AFLP), serial analysis of gene expression (SAGE),years ago that the structure and function of DNA was

deduced, and by the end of 2002 the genomes of 800 and Northern blots are also frequently employed meth-
ods for the analysis of gene expression [24].organisms, including the human, had been nearly fully

sequenced [6]. Alongside the major genome sequencing Databases and Data Analysis
Predictive toxicogenomic studies usually compare theprojects, the technological progress led to the develop-

ment of microarrays allowing the simultaneous monitor- gene expression patterns elicited by chemicals with un-
known toxic potential to the profiles of model com-ing of the expression of thousands of genes and leading

to a rapid progress in functional genomics research. It pounds with known toxicity. Thus, for the use of toxico-
genomics as a predictive tool, the prior knowledge ofis now expected that gene expression analysis will not

only reveal the pharmacological action of a compound, gene expression patterns related to toxicity is absolutely
necessary. Consequently, this approach depends onbut also provide insights into possible safety issues.

Two approaches have been followed to better under- the availability of a reference gene expression database
(DB). Differential expressions of gene signatures arestand and avoid ADR in the future: (1) the identification

of genes or gene variations (SNPs) that put specific thus derived by analyzing expression levels of the com-
pound under scrutiny and the compounds in the DB. Apopulations at risk of ADR to a given drug, and (2) the

understanding of the molecular mechanisms (gene and high-quality DB and robust software with appropriate
algorithms for the comparison of complex gene expres-protein expression) underlying toxicity. The first ap-

proach has provided evidence supporting a role for poly- sion fingerprints are vital for the interpretation and utili-
zation of toxicogenomics data [25, 26].morphisms in ADR [7–9]. Using the second approach

(toxicogenomics), a substantial amount of data has been Several toxicogenomics DBs are currently being built.
The main focus is on the liver, since due to its physiologi-generated in animal models with known toxicants,

mainly hepatotoxins, proving that gene expression anal- cal functions this organ is highly exposed to xenobiotics
and is thus an important target organ for toxicity. Thereysis can provide information to allow classification of

compounds according to their mechanism of toxicity as are several commercially available DBs such as those
provided by GeneLogic, CuraGen, Iconix, and Phase I. Awell as identifying cellular pathways related to the toxic

event [10–16]. More recently, this global gene expression review of the currently available companies has recently
been published [2]. These vendors offer several modesanalysis has been applied to the evaluation of nephrotoxic-

ity [17, 18], genotoxicity [19], and testicular toxicity [20]. of subscription for pharmaceutical companies and usu-
ally include varying amounts of microarray data on or-Several technologies to characterize gene expression

are currently available and additional approaches are gans of interest (liver, kidney, etc.) and bioinformatic
tools incorporating predictive algorithms. In addition tostill being developed. It is outside the scope of this

review to give a full account of microarray technologies these commercially available DBs, most of the major
pharmaceutical companies now have internal toxico-and providers, but it might be useful to give the reader

an idea of the most commonly used platforms. Currently, genomics initiatives. Results obtained from these initia-
tives with model compounds reach the public domainwidely used toxicogenomics platforms are DNA micro-

arrays able to monitor the expression level of a large through presentations at meetings and publications [16,
18, 23, 27–29], while results on development compoundsnumber of known genes simultaneously. There are sev-

eral providers of microarrays, but the basic principle of remain largely unpublished. In addition to the commer-
cially available DBs and those generated by pharmaceu-DNA arrays is to attach a probe to a solid support such

as glass, nylon, or gel matrix [21–23]. Probes are either tical companies, there are some institutional efforts to
create publicly available DBs. In 2000, the National Insti-oligomeres (16- to 70-mers, depending on the platform)

or 500–1500 bp cDNA sequences selected to be specifi- tute of Environmental Health Sciences (NIEHS) estab-
lished the National Center for Toxicogenomics (http://cally complementary to the sequence that needs to be

interrogated. These probes can either be directly syn- www.niehs.nih.gov/nct/home.htm). Also, the Interna-
tional Life Science Institute (ILSI) created in 1999 athesized onto the support (Affymetrix), spotted by fluid

microdispensers (Clontech, Agilent, ABI, and several in- “Technical Committee on Application of Genomics to
Mechanism-Based Risk Assessment” (http://www.ilsi.house array designs from research institutes and phar-

maceutical companies), or targeted electronically to the org). This committee is currently working together with
the European Bioinformatics Institute (EBI, http://www.appropriate spot coordinates (Nanogen, Matrixarray).

The microarrays are incubated with the samples at con- ebi.ac.uk/) to create a toxicogenomics database within
the more general gene expression DB from EBI calledditions appropriate to allow hybridization between the

target sample and the immobilized probe. The detection ArrayExpress (from the Microarray Gene Expression
Data Society [MGED]). These DBs are intended to pro-of the hybridization is usually accomplished through

fluorescent staining, since the samples are labeled be- vide the framework to make microarray data, including
toxicogenomics data, publicly available. In addition, EBIfore hybridization. Depending on the platform, the ex-

pression level for a gene is given as an absolute intensity has made a major effort to standardize the description
and annotation of microarray data and has come up withvalue or as a relative ratio with respect to a baseline

sample. The number of genes on a single array varies the Minimal Information about Microarray Experiments
(MIAME) standard to enable scientist to compare resultsaccording to the chip design. Low-density arrays com-

prise a few hundred genes, while high-density chips obtained at different centers [30, 31].
As regards actual data analysis, the massive amountcontain probes specific for thousands of target genes.

In addition to microarrays, kinetic RT-PCR (Taqman), of genomics data that has been generated has given



Chemistry & Biology
164

biostatisticians a challenge that has yet to be resolved. In truth, our understanding of the biological significance
of gene expression changes is still very incomplete. AnOn the one hand and due to the relatively high costs,

most scientists minimize the number of biological repli- additional source of concern is the sensitivity of gene
expression profiling. If toxicogenomics results in highercates and sometimes even resort to pooling samples to

minimize the number of microarrays. On the other hand, sensitivity and earlier detection of possible ADR, we
might well face the need for a new definition of NOELa typical microarray experiment generates thousands

of data points. Additional confounding factors are time and NOAEL, while not understanding the relevance of
these more sensitive findings.and dose responses. Moreover, groups of genes might

be coregulated by a stimulus while redundancy in mi- Such issues have made the pharmaceutical industry
reluctant to use this new technology on compounds incroarray design leads to multiple probes examining the

same mRNA sequence. Also, gene expression for cer- (advanced) development phases, since they would be
obliged to submit difficult-to-interpret data to the au-tain genes might be switched on or off, rather than fol-

lowing a normal distribution pattern. Thus, the data is thorities, which might cause delay in the development
program. In order to try to assuage this concern, thevery complex and highly multivariate. Several statistical

methods to analyze microarray data are available, but FDA introduced the concept of “safe harbor” at a joint
meeting with the Pharmaceutical Industry held in Maythere is no single paradigm that fits all situations [6,

26, 32–36]. Most commercial providers of array readers 2002 [37]. The Safe Harbor concept was designed to
nonvalidated, exploratory, hypotheses-generating datasupply software that allows basic analysis of the arrays

to be performed and exported to calculation tables such from toxicogenomics, pharmacogenomics, and phar-
macogenetic testing of animals or human subjects. Thisas Microsoft Excel. More sophisticated analysis is usu-

ally performed by additional software such as Eisen principle was clearly intended to encourage companies
to present these kinds of data to the FDA, thus fosteringClustering Tool (Stanford University), GeneSpring (Sili-

con Genetics), Spotfire, Mineset, SIMCA-P (Umetrics), dialog by allowing data sharing and improving collabora-
tion between the FDA and the pharmaceutical industry.Rosetta Resolver (Merk), GeneData Expressionist, which

has been tailored to deal with microarray data from a However, some of the points originally included in the
Safe Harbor draft document were not fully clear regard-variety of platforms. Several pharmaceutical companies

have recognized the need for their own in-house mi- ing the wider legal and regulatory framework. Among
the major points raised by industry are the definition ofcroarray analysis tools. Finally, toxicogenomics DB pro-

viders such as GeneLogic, CuraGen, and Iconix supply Safe Harbor data and the sharing of such data (legal
problems regarding informed consents and confidenti-software tools as part of their subscription packages.

Each of these software programs offer one or several ality of such data). Also, there is an ethical issue of
the FDA ignoring data that have been generated onanalysis methods and tend to leave the biologist with

the difficult choice of which one to employ. Rigorous compounds that may be administered to humans. An
additional point of concern is the handling of the transi-attention to data quality and transformation steps is

crucial and will have a major impact on any analysis. tion from exploratory to confirmed data: how and when
does Safe Harbor finish and what are the possible impli-Among the statistical methods most frequently used

for microarray analysis are conventional parametric or cations? A recent public meeting of the Science Advi-
sory Board of the FDA on April 9, 2003, provided ad-nonparametric statistics, used to analyze the results

gene by gene. Unsupervised analysis tools such as clus- ditional clarification regarding the submission and
interpretation of toxicogenomics data. The CDER (Cen-tering algorithms, principal component analysis, and

self-organizing maps are used to determine if gene ex- ter for Drug Evaluation and Research) is currently gain-
ing insight and understanding of microarray data bypression patterns allow the discrimination of natural

subpopulations such as treated/untreated or healthy/ performing experimental work and by collaborating with
several commercial providers and users. Among thesediseased. In order to use the knowledge stored in the

toxicogenomics DBs, several supervised methods such efforts, “mock” submissions of toxicogenomics data
have been submitted and then used as a basis for dis-as discriminant analysis, neural networks, nearest

neighbors, and support vector machines are based on cussion. Additional clarification on the current policy of
the FDA refers to three categories of pharmacogeno-algorithms that learn from the training data set in the
mics data: (1) not required to be submitted (e.g., earlyDB and use previously acquired knowledge to classify
drug development data); (2) data required to be submit-unknown compounds.
ted but without regulatory impact; and (3) data required
to be submitted and with regulatory impact (e.g., metab-

Current Approaches olizer genotype used for dose selection).
Regulatory Perspective The position of the FDA/CDER regarding submission
In spite of the hopes placed on gene expression analysis of genomics data has been further clarified in a subse-
for the eventual prediction of toxicity, there is consider- quent meeting of the Advisory Committee for Pharma-
able apprehension within the pharmaceutical industry ceutical Science (Pharmacology Toxicology Subcom-
regarding the use that regulatory authorities could make mittee) held on June 10, 2003, but discussions on the
of this type of data. The technologies used are reproduc- “voluntary genomic data submission” without regulatory
ible and robust, but are also known to provide a certain impact are still ongoing. Similarly to the FDA, EMEA
amount of false positive and negative results. Also, the (European Agency for the Evaluation of Medicinal Prod-
ability to investigate the whole transcriptome does not ucts) has established an ad hoc pharmacogenetics

working group. A concept paper was released in Januarynecessarily imply that we understand all the answers.
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2003 (CPMP/4445/03), stating that EMEA/CPMP has [39], and a special issue of Environmental Health Per-
spectives with several articles has been published [40–created briefing sessions as an informal forum for dis-

cussion between sponsors and regulators at EU level. 52]. In addition, a subset of the data produced and
analyzed by the hepatotoxicity working group is beingIn spite of these ongoing discussions, the separation

of the data categories remains dependent on interpreta- submitted to the FDA/CDER in the form of a “mock”
submission. This exercise has shown the critical needtion and will probably be readjusted with growing experi-

ence. Also, pharmacogenomics seems to include quite for rigorous attention to experimental design including
methodology, data evaluation, and the need to reducedifferent kinds of data, from the genotyping of patients

to gene expression data obtained in preclinical animal sources of experimental and intersite variability. Also,
the use of a variety of platforms for the analysis of genestudies. The FDA is planning to clarify these points fur-

ther and to establish an Interdisciplinary Pharmacogen- expression has shown that there are unique aspects to
each platform. Thus, the findings of different platformsomics Review Group (IPGRG) to perform periodically

public reevaluation of this decision making process. To do not fully overlap, but the combination of the out-
comes enriches the data set [38].date, an additional discussion point is the standard-

ization of protocols to ensure data comparability. It is Successes
So far, toxicogenomic data on proprietary compoundsexpected that the authorities will release a guidance

document soon. Despite this very active discussion, in development are scarce. At the First FDA-Pharmaco-
genomics Workshop held in May 2002, data supportingpharmaceutical companies are already starting to gen-

erate toxicogenomics data on compounds in develop- investigative and mechanistic toxicogenomics applica-
tions were presented. A typical set of data showed thement. In this context, it is worth mentioning that the

process of submission of exploratory data without regu- identification of gene expression markers indicative of
acute phase response in isolated mesenteric arterieslatory consequences is currently considered as an addi-

tion to the conventionally used toxicity testing. It is going from rats with fenoldopam-induced vasculitis [37]. An-
other example identified patterns of gene expressionto take a considerable amount of time until validation

of these new methods has been completed. It is too showing that administration of a 5-lipooxygenase inhibi-
tor repressed synthesis of cholesterol and that lens pro-early to address the question whether or not toxicogeno-

mics will be able to replace some of the conventional teins were targets of drug-induced cataractogenesis
[37]. In a recent publication by our group, gene expres-toxicology tests needed for a NDA, but it is hoped that

long-term studies might be considerably shortened by sion analysis was used to distinguish two compounds
with comparable pharmacology but with distinct toxico-an increase in sensitivity. For now the main advantage

of a toxicogenomics submission from a regulatory point logical profiles. The results provided possible markers
for compound-induced steatosis, which were amenableof view is the insight it provides into mechanisms and

the identification and validation of suitable biomarkers. to testing using higher throughput methods such as
PCR [53]. These early examples provide evidence thatILSI Initiative

The International Life Sciences Institute’s (ILSI) Health toxicogenomics can give insights into toxicological
mechanisms and affected pathways.and Environmental Sciences Institute (HESI), a nonprofit

research and educational organization, has created a Cancer is one of the major disease areas in which
genomics investigations have made considerable ad-Technical Committee on Application of Genomics to

Mechanism-Based Risk Assessment (http://www.ilsi. vances, probably due to the close relationship between
the disease and genetic factors. An early report de-org). The mission of this Genomics Committee is to

“advance the scientific basis for the development and scribed the development and progression of malignant
melanoma using microarrays [54]. More recent publica-application of genomic methodologies to mechanism-

based risk assessment; to address scientific issues re- tions present results differentiating neoplastic and nor-
mal tissue as well as differentiating types of cancers andlating to the use of these new technologies as a means

for understanding toxic response and mechanisms; and generating predictive markers using gene expression
profiles [1]. Golub et al. demonstrated gene expressionto provide a scientific forum for a consensus-based ap-

proach to interpreting and applying these data.” This profiles characteristic of two types of leukemia (ALL
and AML) using the technique of class prediction. Thiscommittee was established in 1999 as a collaborative

program between industrial, government, and academic approach provided an improvement in early diagnostic
techniques that led in some cases to an adjustment ofinstitutions including nearly 40 laboratories in the US,

Europe, and Japan [38]. This international collaborative the therapy with a direct benefit for the patient [55].
Also, studies on diffuse large cell lymphoma (DLBCL)effort is evaluating relevant experimental protocols and

technologies with the main foci of interest being hepato- using microarrays showed that variability in the disease
progression and survival outcome could be correlatedtoxicity, nephrotoxicity, and genotoxicity. For each of

these topics, working groups are conducting experi- with gene expression data [56, 57]. The group of John
Weinstein at the NIH has published results classifyingmental studies with known toxicants and evaluating

them using microarray technologies, as well as conven- tumor cell lines derived from a variety of tumors ac-
cording to their gene expression patterns and to theirtional toxicology endpoints. In addition, the Committee

has formed a database working group that is working response to anticancer drugs, providing an important
set of data on gene-drug relationships [58–60]. Micro-together with EBI (European Bioinformatics Institute) to

make the obtained data publicly available. arrays are also being employed for investigations aiming
to identify diagnostic biomarkers for different types ofSome of the data obtained by the working groups has

already been published by subgroups of participants cancer. As an example, gene expression analysis of
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adrenocortical carcinomas has recently provided a set the effects of steatotic and cholestatic and nontoxic
compounds on the same genes. Figure 1 depicts a heatof genes that are likely to be specific of malignant lesions

and are therefore potential diagnostic biomarkers [61]. map representing the induction or repression of the se-
lected genes by a variety of compounds. The resultsHence, in the field of cancer research, the analysis of

differential gene expression has helped to increase the proved that gene expression profiles can be used to
distinguish direct acting compounds from other typesdiagnostic power and the prediction of the clinical out-

come as well as to adapt the therapy, providing direct of compounds. Furthermore, the assessment of the
modulation of gene expression in two experiments per-benefits to patients.

In addition to the use of gene expression analysis in formed independently with the same compound showed
good reproducibility of the gene expression profiles.the field of cancer research and diagnosis, increasing

interest is emerging in the use of microarrays for the Hence, gene expression profiles in liver after exposure
to hepatotoxins are reproducible and characteristic ofdetection of specific genotypes. Currently, DNA testing

is moving rapidly into widespread use to allow better and classes of toxins.
In addition to the in vivo DB, in vitro approaches aremore individualized choices of treatments. Variations in

cytochrome P450 are known to play a major role in drug also being conducted at Roche. Results from these in
vitro models, including primary cultures and cell lines,response and have been examined in relation to safety

and efficacy of drugs for years. A microarray-based geno- show significant discrepancies when compared to in
vivo results [62]. Briefly, it has been shown that thetyping assay allows the simultaneous detection of over

two dozen allelic variants affecting CYP450 enzyme ac- tested hepatic cell lines do not express many of the
crucial metabolic enzymes and are, therefore, not com-tivity, including those caused by SNPs, frame shifts,

multiple base repeats, and even complete gene deletion parable to in vivo systems or to the primary in vitro
models. Primary cell culture models, on the other hand,or duplication. The new AmpliChip, developed by Roche

and Affymetrix, tests the most common variations in two are basically unstable, since hepatocytes undergo a dy-
namic process including an initial phase of isolationgenes, CYP2D6 and CYP2C19, which play roles in the

metabolism of about 45% of the prescription drugs on stress followed by a dedifferentiating phase ending in
cell death. These time-related changes increase variabil-the market. The metabolic analyses performed by the

chip will eventually offer practitioners a tool to catego- ity and so might mask some toxicologically relevant
effects. Nevertheless, results obtained in our laboratoryrize patients according to their metabolic type, thereby

aiding them in prescribing more effective dosages of using Affymetrix GeneChips and RT-PCR demonstrated
that some key genes that are regulated in vivo are alsomedication and avoiding adverse side effects. In spite

of these promising developments, several obstacles changed in the cell culture system. In this example,
represented in Table 2, the induction of CYP2B,need to be overcome before achieving the full potential

of this kind of test. Technical challenges such as auto- CYP3A1, and UDP2B in vitro were in good agreement
with the effects on the same genes in the livers of themation and reduction of sample processing time need

to be improved. Additionally, education of the general animals treated with the same test compound.
Transcriptional effects in vitro on a subset of appropri-practitioners regarding the technology and its benefits

to patients is necessary. However, it is expected that the ately selected marker genes will provide information
regarding the potential liability in vivo. In addition, thetechnology will develop into a fully automated, certified

diagnostic tool within the next 3–5 years. in vitro hepatotoxicity DB provides evidence showing
that compound classification according to gene expres-
sion profiles is possible, as long as the experimental

Application of Toxicogenomics at Roche conditions (in particular cell culture model) are standard-
Compound Classification Using Gene ized. The enormous advantage of in vitro systems is
Expression Profiles that they allow the number of test animals to be reduced,
As outlined above, it has been widely recognized that increase the assay throughput, and make possible ex-
a DB with known reference toxicants is necessary for perimentation on human tissues, as well as on animal
accurate compound classification. The toxicogenomics tissues.
group at Roche has generated a database containing Mechanistic Explanations
hepatic gene expression data using the Affymetrix mi- In addition to the classification of compounds based
croarray. Model compounds, administered to male rats, on gene expression fingerprints obtained from tissue
were categorized into three main groups: direct acting samples after exposure to toxicants, much has been
(necrosis/apoptosis), steatotic (lipidosis), and cholestatic learned about the underlying mechanisms of toxicity.
(bile acid transport impairment). Preliminary validation Indeed, the identification of genes and/or pathways that
of the data was performed by analyzing similarities are modulated by certain toxicants provides insight into
among fingerprints obtained from several compounds possible mechanisms of toxicity. As typical examples,
within the same category. We determined the effect of Clofibrate and WY 14643 are known to cause peroxi-
five hepatotoxic compounds with a similar mechanism some proliferation and induce cytochrome P450 and
of toxicity (“direct acting”) on hepatic gene expression other specific genes in rodents. These compounds were
profiles and determined a direct acting fingerprint by chosen as proof of concept for a toxicogenomics inves-
including genes regulated by at least 4 of these 5 com- tigation [63], where the induction of some known PPAR
pounds. The specificity of these fingerprints for the com- � target genes by both compounds could be confirmed

[64, 65].mon mechanism of toxicity was assessed by comparing
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Figure 1. Regulation of Gene Expression by Different Types of Hepatotoxicants

Heat map representing gene regulation for a selection of genes caused by different types of compounds (steatotic, direct acting, and
cholestatic). Blue boxes represent downregulated genes, and red boxes represent upregulated genes. Labels under the lanes indicate the
five compounds used for the selection of genes (BRB, Bromobenzene; CCl4, carbon tetrachloride; o-DCB, 1,2-dichlorobenzene; Hyd, Hydrazine;
and Thio, Thioacetamide) as well as the nontoxic analog p-DCB (1,4-dichlorobenzene).

Follow-Up Experiments for the Confirmation of microarray data to confirm the alteration of a given
transcript (using RT-PCR or Northern blots) and func-of Hypothesis

Confirmation of results obtained by microarray analysis tional tests that confirm that increase of transcript is
translated into an increase of protein content and/orusing adequate follow-up assays with lower cost and/

or higher throughput and increased accuracy is an im- activity. Typical examples from our laboratory include
the confirmation of induced messenger levels are theportant task in toxicogenomics. Nevertheless, one

needs to distinguish between the technical validation induction of Gadd-45 and other stress-inducible genes

Table 2. Gene Expression of Example Genes In Vivo and In Vitro Assessed Using RT-PCR with Sybr Green as the Reporting Fluorophore

In Vivo, Single Administration
of 400 mg/kg Dose In Vitro, 24 hr after Single Exposure

Gene Name 6 hr 24 hr 20 �M 100 �M

Cytochrome P450 CYP2B2 31 72 260 2
Cytochrome P450 CYP2B, exon 9 91 95 240 10
Cytochrome P450 CYP3A1 1 2 8 2
UDP-glucuronosyltransferase 2b1 4 5 101 5

Values are expressed as fold changes with respect to the control. Note that in vitro the strongest induction occurs at a concentration of 20
�M, while the cytotoxic concentration of 100 �M has a weaker effect. Also noteworthy is the fact that the direct exposures of the hepatocyte
monolayers elicit a stronger response than the one observed in vivo.
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predictability and speed of preclinical safety assess-
ments. Published results so far show that genome-wide
gene expression analysis is a powerful tool for compound
classification and for the detection of new, specific, and
sensitive markers for given mechanisms of toxicity.

In addition, preliminary results support the theory that
gene expression might be more sensitive than conven-
tional toxicology endpoints. Therefore, compound clas-
sification could be performed during early, short-term
(i.e., single-dose) animal studies. Hence, time, cost, and
number of animals needed to identify the toxic potential
of a compound would be greatly minimized. It is also
expected that in the very near future, regulatory authori-
ties will evaluate toxicogenomics data as supplementary
information supporting NDAs. Thus, the growing accep-
tance by the scientific community and the regulatory
authorities, together with a variety of publications val-
idating the technology, is providing the foundation forFigure 2. Cluster of Different Treatment Groups According to the
a successful implementation of toxicogenomic ap-Expression Levels of Selected Genes
proaches in safety assessment.The nonsteatotic Compound B (Ro-CmpB) clusters together with

The potential identification and validation of possiblethe vehicle-treated animals, while the steatotic Compound A (Ro-
CmpA) forms a separate branch. marker genes is also gaining momentum. Such markers

could be employed in automated, high throughput assay
systems that will provide indications regarding toxicity

by compounds causing macromolecule damage and potential fast and accurately, without incurring the high
classified as direct acting compounds. As regards func- costs commonly associated with microarray analysis.
tional confirmation, the induction of CYP2B by 5-HT6 Appropriately chosen markers are amenable to being
receptor antagonist was confirmed by Western blot tested in cell-based assays that will allow scientists to
analysis [53], while the induction of acyl-Coa oxidase evaluate compounds much earlier in the development
by WY 14643 was confirmed by measuring its enzymatic process, improving clinical candidate selection.
activity in liver extracts (unpublished observations). The understanding of the molecular mechanisms un-
Use of Toxicogenomics for Pharmaceuticals: A derlying toxicity obtained through gene expression anal-
Retrospective Analysis ysis after exposure of model systems (animals or cell
Two compounds with similar pharmacological profiles cultures) to test compounds will also provide more in-
but differing hepatotoxic potential were analyzed using

sight into species-specific response to drugs regarding
a toxicogenomics approach [53]. In order to clarify

efficacy and toxicity. Hence, it is expected that extrapo-
whether toxicogenomics could recognize the hepato-

lation across species will become more accurate by
toxic potential of Compound A and to gain insight into

enhancing the interpretation of preclinical observationsthe possible molecular mechanisms underlying the he-
and their meaning for the human situation. This shouldpatic findings (steatosis), gene expression profiles of
immensely increase the predictability of toxic liabilitiesthe livers of rats treated with this compound and a non-
and of potential risk accumulation for drug combinationshepatotoxic 5-HT6 receptor antagonist (Compound B)
or drug-disease interactions.were obtained. Analysis using hierarchical clustering
Challengesclearly showed that the two compounds could be distin-
In spite of the enormous opportunities offered by theguished based on their effect on gene expression pat-
available technologies, caution regarding the interpreta-terns in the liver. As depicted in Figure 2, gene expres-
tion of the obtained results is still necessary. Gene ex-sion levels in the liver provide sufficient information to
pression data in the absence of excellent technical anddistinguish animals treated with a nonhepatotoxic com-
analytical procedures or correct interpretation of thepound or vehicle, from animals exposed to a steatotic
toxicological significance of the results can be mis-compound. Moreover, side effects can be detected ear-
leading. Bearing this in mind, and that toxicogenomicslier with gene expression analysis than with conventional
is a young and fast developing field, there are two majortoxicology measurements. This finding is vital in order
issues that need to be overcome.to further assess the usefulness of toxicogenomics ap-

First, technical validation. This refers to the compara-proaches to improve the process of detecting the toxic
bility of the data and standardization of the methods. Itpotential of compounds quicker and more accurately
includes issues such as quality control, gene annota-than with conventional toxicity studies. Also, the obtained
tions, hybridization procedures, and statistical datagene expression patterns provide possible marker genes
analysis. Can results generated at different sites beamenable to being validated as biomarkers.
compared, and is a reference DB generated at one site
a valid reference for data generated at other sites? TheseFuture Perspectives
issues have been recently addressed by ILSI, and dis-Advantages
cussions regarding the need for “standard procedures”Toxicogenomics represents an exciting new approach

to toxicology and has a great potential to influence the are ongoing between the FDA and the pharmaceutical
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